Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Analytical Modeling of Open-Circuit Magnetic Field in Permanent Magnet Assisted Synchronous Reluctance Motors Considering Iron Bridge Saturation Effects

2022-03-29
2022-01-0731
Calculating accurately iron bridge saturation effects of the magnetic field, for Permanent Magnet Assisted Synchronous Reluctance Motors (PMASynRMs), remains to be a knotty problem. This paper presents an analytical modeling method to predict open-circuit magnetic field distributions and electromagnetic performances of PMASynRMs, considering iron bridge saturation effects. This analytical modeling method combines the magnetic equivalent circuit method, superposition principle, the solution of the governing Maxwell’s field equations and a complex relative permeance function. A quadruple-layer PMASynRM are remodeled into four surface-inserted permanent magnet synchronous motors (SPMSMs) which have different surface-inserted permanent magnets.
Technical Paper

Separation of Average Torque and Torque Ripple in PMSMs Considering Saturation, Cross-Coupling and Flux Harmonics Using Frozen Permeability Method

2022-03-29
2022-01-0730
The separation and analysis of the torque of the permanent magnet synchronous motor is of great significance for optimizing the torque output of the motor. Based on the frozen permeability method, the virtual work principle (VWP) or the Maxwell stress tensor method (MSTM) is often used to separate the torque for torque analysis. However, considering the influence of non-ideal factors such as motor saturation, cross-coupling and flux harmonics, there are differences in torque separation between the VWP and the MSTM, which has been researched and analyzed in this paper. Based on this, for the assisted airspace barrier design of a surface-inserted permanent magnet synchronous motor, to conduct theoretical research on the torque optimization design, this paper uses the VWP to separate the average torque and the MSTM to separate the torque ripple.
Technical Paper

Accurate Modeling of PMSM Considering Orthotropic Material Parameters of Stator System for Vibroacoustic Prediction

2022-03-29
2022-01-0725
An accurate finite element (FE) model is the basis for the numerical prediction of vibration and noise of permanent magnet synchronous motors (PMSMs). This paper provides an equivalent modeling method of PMSMs considering the orthotropic material parameters of the stator system. First, a theoretical analysis of the influence of orthotropic material parameters on modal characteristics is implemented. Subsequently, the influence of orthotropic material parameters on the modal frequency of the stator is analyzed through the FE method. Then, the modal parameters of the stator core and the stator assembly are obtained by modal tests. According to the equivalent FE model and modal parameters, the orthotropic material parameters of the stator system are acquired. Moreover, to save the calculation time and simplify the modal identification process, the influence of windings is taken into account through additional mass and additional stiffness during the modeling process.
Technical Paper

Fatigue Analysis on a Battery Support Plate for the Pure Electric Vehicle

2022-03-29
2022-01-0256
As the international community strengthens the control of carbon dioxide emissions, electric vehicles have gradually become a substitute for internal combustion engine vehicles. The battery pack is one of the most important components of electric vehicles. The strength and fatigue performance of the battery support plate not only affect the performance of the vehicle but also concern the safety of the driver. In the present study, the finite element model of a battery pack for fatigue analysis is completely established. The random vibration stress response analysis and acceleration power spectral density response analysis of the support plate for the battery pack are carried out, and the accuracy of the finite element model is verified by a random vibration test.
Technical Paper

Analysis on Irreversible Demagnetization Condition of Linear Oscillatory Actuator with Moving Magnets

2022-03-29
2022-01-0281
In this paper, a linear oscillatory actuator (LOA) with moving magnets used in active engine mount is modeled and theoretically analyzed considering its performance decline at high temperature. Firstly, a finite element model (FEM) of the LOA with moving magnets is established. The actuator force is decomposed to ampere force and cogging force through formation mechanism analysis. By using the FEM, ampere forces and cogging forces of the LOA with moving magnets under different current loads and different mover positions are calculated. The FEM and calculation method are validated by bench level test. The voice coil constant and cogging coefficient at normal temperature are identified, which indicates the actuator force is a linear model related to the current and the mover position.
Technical Paper

Nozzle Tip Wetting in GDI Injector and Its Link with Nozzle Spray Hole Length

2022-03-29
2022-01-0498
Fuel film deposited on fuel injector tips used in gasoline direct injection engines, otherwise known as nozzle tip wetting, has been identified as an essential source of particle emissions. Attempts have been made to reduce nozzle tip wetting by the optimization design of nozzle geometry parameters. However, relevant investigations are still limited to emission measurements and corresponding indirect analysis. Due to the lack of related visualization research, the mechanism of nozzle tip wetting formation and its link with nozzle internal flow are still unclear. To clarify the influence of spray hole length on nozzle tip wetting and the underlying mechanisms, the dynamic formation process and the fuel film area evolution of nozzle tip wetting were visualized directly using laser-induced fluorescence technique and photomicrography technique.
Technical Paper

Numerical Analysis of Flame Temperature and Intermediate Product Concentration in Micro-Scale Coaxial Diffusion Combustion of Methanol

2022-03-29
2022-01-0699
As an excellent nanoscale material, carbon nanotubes (CNTs) play a very important role in improving the batteries of new energy vehicles. The micro-scale combustion flame synthesis method is a promising method for preparing carbon nanotubes. To explore the optimal growth condition of carbon nanotubes under micro-scale combustion, the detailed mechanism of methanol C3 (114 species, 1999 reactions) was reduced based on whole-species sensitivity analysis, then a suitable model of methanol combustion was established by using Fluent software coupling with simplified mechanism (16 species, 65 reactions) of methanol. The model was used for the numerical simulation of micro-scale coaxial diffusion combustion of methanol, and then it was verified by the experimental results of micro-scale combustion of methanol.
Technical Paper

Experimental Analysis of - 30°C Cold Start Process for an Automotive PEM Fuel Cell System

2022-03-29
2022-01-0694
Proton exchange membrane fuel cell (PEMFC) system is considered as one of the most popular power sources because of its high energy density, fast dynamic response and zero pollution. However, the start-up at low temperature (e.g. - 30 °C) is still a major challenge for its wide application due to water freezing in Membrane Electrode Assembly (MEA). In this paper, a cold start test process in an environment cabin with auxiliary heat was carried out for a full power automotive PEMFC system, including normal operation, shutdown purge and cold start processes analysis from -30°C. Rated power of this stack is 100kW at the current density of 1.4A/cm2 and relevant maximum output power can reach to 120kW. In order to reduce the damage of high potential to MEA, on-load purge with a current of 30A is conducted to removing extra water in stack for improving cold start ability. Based on corresponding control strategy, cold start was realized successfully within 110s.
Technical Paper

Comparative Thermal Runaway Behavior Analysis of High-Nickel Lithium-Ion Batteries with Different Specifications

2022-03-29
2022-01-0706
High-nickel lithium-ion batteries extend the driving mileage of electric vehicles (EVs) to 600km without much cost increment. However, thermal accidents commonly occur due to their poor thermal stability, such as thermal runaway. To address the issue, a comprehensive analysis of the thermal runaway behavior of high-nickel lithium-ion batteries with different specifications is conducted. The thermal runaway process is divided into five stages based on self-heating generation, voltage drop, safety valve rupture, and thermal runaway triggering for the three tested cells. The three tested cells demonstrate similar behaviors during each stage of the thermal runaway process. However, there are still apparent differences between their characteristics. This study analyses the thermal runaway features from the following aspects: (i) characteristic temperature; (ii) the relationship between sudden voltage drop and characteristic temperatures; (iii) temperature recovery; (iv) thermodynamics.
Technical Paper

Topology Optimization of Rear Cover in EV Motor and Noise Attenuation

2022-02-14
2022-01-7005
It is becoming an increasingly important issue to improve NVH performance of electric drive motor for electric vehicle as the market grows rapidly. The correlation between stiffness of rear cover of motor, rotor eccentricity and noise of an electric drive is discussed in this paper which was few mentioned before. Poor stiffness of bearing chamber of rear cover may cause rotor eccentricity, which would lead to additional orders of electromagnetic noise. Stiffness optimization model of rear cover of motor was established, and the Optistruct of Hyper works software was used to improve stiffness as well as mode frequency by designing circular and radial ribs to surround bearing chamber of rear cover under guidance of topology. As compared to basis model with same mass, the 1st and 2nd strict mode frequencies of optimized rear cover separately increased by 11% and 12.5% with numerical simulations.
Technical Paper

A Comparative Study on Energy Management Strategies for an Automotive Range-Extender Electric Powertrain

2021-12-31
2021-01-7027
In this work, the influences of various real-timely available energy management strategies on vehicle fuel consumption (VFC) and energy flow of a range-extender electric vehicle were studied The strategies include single-point, multi-point, speed-following, and equivalent consumption minimization strategy. In addition, the dynamic programming method which cannot be used in real time, but can provide the optimal solution for a known drive situation was used for comparison. VFCs and energy flow characteristics with different strategies under Worldwide Harmonized Light Vehicles Test Cycle (WLTC) were obtained through computer modeling, and the results were verified experimentally on a range-extender test bench. The experimental results are consistent with the modeled ones in general with a maximum deviation of 4.11%, which verifies the accuracy of the simulation models.
Technical Paper

Investigation on Brake Disc Deformation Under Asymmetric Mechanical Loads

2021-10-11
2021-01-1291
The mechanism of automobile brake hot spots is unclear, which is a problem in the brake industry. Complex coupling between friction, heat, contact, and structure is the main difficulty in revealing the mechanism of brake hot spots. This paper proposes a new way to study the mechanism of hot spots by analyzing the deformation behavior of brake discs under asymmetric mechanical loading. The actual brake is simplified into a brake disc and friction lining system, and a transient dynamic finite element model under asymmetric mechanical loads is established to analyze the deformation characteristics of the brake disc. The normal deformation of the brake disc under asymmetric mechanical loads consists of two parts: low-frequency bending deformation and high-frequency waviness deformation, which are caused by the squeezing effect of the asymmetric brake pressure on the brake disc and the constraint modal vibration of the brake disc.
Technical Paper

Crashworthiness Optimization of Hydraulic Excavator Cab Roof Rail and Safety Prediction: Finite Element Analysis and Experimental Validation

2021-04-06
2021-01-0925
Off-road trucks, tractors and earth-moving machines are at high risk of accidents involving falling objects or rollovers. Therefore, these machines need proper protective structures to protect operators. This study investigates the crashworthiness optimization of a hydraulic excavator cab roof rail based on an improved bi-directional evolutionary structural optimization (BESO) method considering two different load cases (a lateral quasi-static load and an impact load from the top of cab, respectively). In the crashworthiness optimization problem, a weighted summation of external works done by the two different load cases is treated as the objective function while the volume of design domain is treated as the constraint. A mutative weight scheme is proposed to stabilize the optimization and balance the two load cases. Finite element (FE) model is established and two prototypes are fabricated based on the optimal design.
Technical Paper

Robust Design Optimization for the Mechanical Claw of Novel Intelligent Sanitation Vehicles

2021-04-06
2021-01-0839
The mechanical claw is an important functional part of intelligent sanitation vehicles. Its performance significantly influences the functional reliability and structural safety of intelligent sanitation vehicles. The load of the trash changes extensively during the work of the mechanical claw. Hence, a comprehensive consideration of structural uncertainty during designing is needed to meet performance requirements. Uncertainty optimization design should be applied to reduce the sensitivity of structural performance to uncertain factors and ensure the robust performance of the mechanical paw structure. In this study, a numerical model of the mechanical claw of novel intelligent sanitation vehicles is established first in SolidWorks, and a finite element model is built by Optistruct. Based on the analysis of uncertain load factors of the mechanical claw, a robust mathematical model of uncertain factors is established by the Gauss-Chebyshev and Smolyak algorithm.
Technical Paper

Analysis of Discretization for Transient Impact Loads on Door Closing

2021-04-06
2021-01-0799
The transient impact load generated by door closing is used as the input of the closing condition, which is an important part of door system investigation. In this article, the basic theory of transfer path analysis (TPA) is introduced to handle the abnormal vibration of the front-left door with the glass down stall position of a certain vehicle during the closure. The transient impact loads are discretized under the closed door and obtained using the inverse matrix (IM) method in TPA. Vehicle test and bench test are conducted. The closed door is subjected to the transient impact loads of the sealing strip and the latch on the body side. In the vehicle test, acceleration sensors are pasted on the target point and the reference point on the door to obtain the acceleration vibration response upon the door closure.
Technical Paper

Compressive and Bending Resistance of the Thin-Walled Hat Section Beam with Strengthened Ridgelines

2021-04-06
2021-01-0293
To overcome some drawbacks of using UHSS (Ultra High Strength Steel) in vehicle weight reduction, like spot weld HAZ (Heat Affected Zone) softening, hard machining and brittleness, a new solution of ultra-high stress strengthening was proposed and applied to the ridgelines of thin-walled structures in this paper. Firstly, stress distribution characteristics, the laws of stress variation and the compressed plate buckling process of the rectangular thin-walled beam under compressive and bending load were analyzed in elastic plastic stage by theory and Finite Element (FE) simulation. Secondly, based on elastic plastic buckling theory of the compressed plate and stress distribution similarity of the buckling process of the thin-walled box structure, three factors influencing the ultimate resistance enhancement of thin-walled hat section beam were found, and the rationality and accuracy of cross section ultimate resistance prediction formulas were also verified by FE simulation.
Technical Paper

Multi-Objective Control of Dynamic Chassis Considering Road Roughness Class Recognition

2021-04-06
2021-01-0322
For the DCC (Dynamic Chassis Control) system, in addition to the requirement of ride and comfort, it is also necessary to consider the requirement of handling and stability, and these two requirements are often not met at the same time. This poses a great challenge to the design of the controller, especially in the face of complex working conditions. In order to solve this problem, this paper proposes a comprehensive DCC controller that considers road roughness class recognition. Firstly, a quarter vehicle model is established, the road surface roughness is calculated from the vertical acceleration of the wheels measured by the sensors. Then we calculate the autocorrelation function and the Fourier transform to estimate the PSD (Power Spectral Density) to get the road roughness class. Then control algorithms are designed for the vertical motion control, roll control and pitch control.
Technical Paper

Numerical Study on Flammability Limit and Performance of Compression-Ignition Argon Power Cycle Engine with Fuel of Hydrogen

2021-04-06
2021-01-0391
The argon power cycle engine, which uses hydrogen as fuel, oxygen as oxidant, and argon other than nitrogen as the working fluid, is considered as a novel concept of zero-emission and high-efficiency system. Due to the extremely high in-cylinder temperature caused by the lower specific heat capacity of argon, the compression ratio of spark-ignition argon power cycle engine is limited by preignition or super-knock. Compression-ignition with direct-injection is one of the potential methods to overcome this challenge. Therefore, a detailed flammability limit of H2 under Ar-O2 atmosphere is essential for better understanding of stable autoignition in compression-ignition argon power cycle engines.
Technical Paper

Simulation Study on the Influence of the Shielding Mechanism of the Battery Pack Shell on the Vehicle Radiation Emission

2021-04-06
2021-01-0149
From the perspective of the three elements of electromagnetic interference, the main function of shielding is to cut off the propagation path of electromagnetic noise. The battery pack casing can be regarded as shielding the electromagnetic interference conducted on its internal and external wiring harnesses, but because the battery pack casing has power lines in and out, the battery pack casing is an incomplete shield. In the field of electromagnetics, shielding can be divided into electrical shielding, magnetic shielding and electromagnetic shielding. Therefore, this paper studies its influence on the electromagnetic radiation emission of the whole vehicle from the perspective of shielding mechanism. Due to the role of the switch components in the power battery system, strong current fluctuation di/dt and voltage fluctuation dv/dt will be generated on the power cable, and these interferences will have an important impact on the radiation emission of the vehicle.
Technical Paper

Anode Pressure Control with Fuzzy Compensator in PEMFC System

2021-04-06
2021-01-0121
Hydrogen safety is of great importance in proton exchange membrane fuel cell (PEMFC) systems. Anode pressure control has become a focus point in recent years. The differential pressure between anode and cathode in PEMFC system needs to be carefully controlled under a suitable threshold. In practice, the anode pressure is usually controlled about 20–30kPa higher than the cathode pressure to minimize nitrogen crossover and improve cell stability. High differential pressure could lead to irreversible damage in proton exchange membrane. PID control was the dominant method to control the anode pressure in the past. However, the anode pressure’s fluctuation when hydrogen mass flow suddenly changes is a long-term challenge. As the requirements of control precision are increasingly high, the traditional PID control needs to be improved. Several new control algorithms are presented in recent researches, however, mostly are theoretical and experimental.
X